359 research outputs found

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Myocardial changes in incident haemodialysis patients over 6-months:an observational cardiac magnetic resonance imaging study

    Get PDF
    Patients commencing on haemodialysis (HD) have an increased risk of cardiovascular events in the first year after starting HD compared to those patients established on HD longer. Left ventricular (LV) hypertrophy and abnormal myocardial strain predict mortality. There may be changes in the myocardium of incident HD patients over a 6-month period of HD which may explain changes in cardiovascular risk. We used CMR to consider changes in LV mass, myocardial strain and T1 mapping. We examined changes in pre-dialysis highly sensitive troponin T. 33 patients undergoing HD for <12 months were recruited. Participants underwent CMR at baseline and after 6-months of standard care. 6-months of HD was associated with reduction in LV mass index (Baseline: 78.8 g/m2 follow up: 69.9 g/m2, p = <0.001). LV global longitudinal strain also improved (Baseline: −17.9%, follow up: −21.6%, p = <0.001). Change in T1 time was not significant (Baseline septal T1 1277.4 ms, follow up 1271.5 p = 0.504). Highly sensitive troponin T was lower at follow up (Baseline 38.8 pg/L, follow up 30.8 pg/L p = 0.02). In incident HD patients, 6-months of HD was associated with improvements in LV mass, strain and troponin. These findings may reflect improvement in known cardiac tissue abnormalities found in patients over the first year of HD

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Garlic's ability to prevent in vitro Cu(2+)-induced lipoprotein oxidation in human serum is preserved in heated garlic: effect unrelated to Cu(2+)-chelation

    Get PDF
    BACKGROUND: It has been shown that several extracts and compounds derived from garlic are able to inhibit Cu(2+)-induced low density lipoprotein oxidation. In this work we explored if the ability of aqueous garlic extract to prevent in vitro Cu(2+)-induced lipoprotein oxidation in human serum is affected by heating (a) aqueous garlic extracts or (b) garlic cloves. In the first case, aqueous extract of raw garlic and garlic powder were studied. In the second case, aqueous extract of boiled garlic cloves, microwave-treated garlic cloves, and pickled garlic were studied. It was also studied if the above mentioned preparations were able to chelate Cu(2+). METHODS: Cu(2+)-induced lipoprotein oxidation in human serum was followed by the formation of conjugated dienes at 234 nm and 37°C by 240 min in a phosphate buffer 20 mM, pH 7.4. Blood serum and CuSO(4 )were added to a final concentration of 0.67% and 0.0125 mM, respectively. The lag time and the area under the curve from the oxidation curves were obtained. The Cu(2+)-chelating properties of garlic extracts were assessed using an approach based upon restoring the activity of xanthine oxidase inhibited in the presence of 0.050 mM Cu(2+). The activity of xanthine oxidase was assessed by monitoring the production of superoxide anion at 560 nm and the formation of uric acid at 295 nm. Data were compared by parametric or non-parametric analysis of variance followed by a post hoc test. RESULTS: Extracts from garlic powder and raw garlic inhibited in a dose-dependent way Cu(2+)-induced lipoprotein oxidation. The heating of garlic extracts or garlic cloves was unable to alter significantly the increase in lag time and the decrease in the area under the curve observed with the unheated garlic extracts or raw garlic. In addition, it was found that the garlic extracts were unable to chelate Cu(2+). CONCLUSIONS: (a) the heating of aqueous extracts of raw garlic or garlic powder or the heating of garlic cloves by boiling, microwave or pickling do not affect garlic's ability to inhibit Cu(2+)-induced lipoprotein oxidation in human serum, and (b) this ability is not secondary to Cu(2+)-chelation

    Natural Splice Variant of MHC Class I Cytoplasmic Tail Enhances Dendritic Cell-Induced CD8+ T-Cell Responses and Boosts Anti-Tumor Immunity

    Get PDF
    Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-Kb generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-Db-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-Db DCs were superior to WT-Db DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Stromal Cell-Derived Factor 1 Polymorphism in Retinal Vein Occlusion

    Get PDF
    BACKGROUND: Stromal cell-derived factor 1 (SDF1) has crucial role in the regulation of angiogenesis and ocular neovascularisation (NV). The purpose of this study was to evaluate the association between SDF1-3'G(801)A polymorphism and NV complications of retinal vein occlusion (RVO). METHODS: 130 patients with RVO (median age: 69.0, range 35-93 years; male/female- 58/72; 55 patients had central RVO, 75 patients had branch RVO) were enrolled in this study. In the RVO group, 40 (30.8%) patients were diagnosed with NV complications of RVO and 90 (69.2%) patients without NVs. The median follow up period was 40.3 months (range: 18-57 months). The SDF1-3'G(801)A polymorphism was detected by PCR-RFLP. Allelic prevalence was related to reference values obtained in the control group consisted of 125 randomly selected, age and gender matched, unrelated volunteers (median age: 68.0, range 36-95 years; male/female- 53/72). Statistical analysis of the allele and genotype differences between groups (RVO patients vs controls; RVO patients with NV vs RVO patients without NV) was determined by chi-squared test. P value of <0.05 was considered statistically significant. RESULTS: Hardy-Weinberg criteria was fulfilled in all groups. The SDF1-3'G(801)A allele and genotype frequencies of RVO patients were similar to controls (SDF1-3'A allele: 22.3% vs 20.8%; SDF1-3'(801)AA: 5.4% vs 4.8%, SDF1-3'(801)GG: 60.8% vs 63.2%). The frequency of SDF1-3'(801)AA and SDF1-3'(801)GA genotypes, as well as the SDF1-3'(801)A allele frequency were higher in RVO patients with NV versus in patients without NV complication (SDF1-3'(801)AA+AG genotypes: 57.5% vs 31.1%, p = 0.008; SDF1-3'(801)A allele: 35.0% vs 16.7%, p = 0.002) or versus controls (SDF1-3'(801)AA+AG genotypes 57.5% vs 36.8%, p = 0.021; SDF1-3'(801)A allele: 35.0% vs 20.8% p = 0.01). Carrying of SDF1-3'(801)A allele increased the risk of neovascularisation complications of RVO by 2.69 (OR, 95% CI = 1.47-4.93). CONCLUSION: These findings suggest that carrying SDF1-3'(801)A allele plays a role in the development of neovascular complications in retinal vein occlusion
    • …
    corecore